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ABSTRACT

We present a method for the construction of patient-specific
atlases of the brain. Traditional atlases of the brain aim to
characterize the variability of a population of subjects. A
common approach is to average the anatomies of a population
after alignment to a common coordinate system. Subjects are
typically given equal weights during averaging which results
in atlases that are population-specific rather than subject spe-
cific. In this paper we propose a method for the construction
of patient-specific atlas for a given query subject from a large
population cohort. During the atlas construction we compute
the similarity between the query subject and the subjects in
the population cohort. This similarity measure can be based
on image similarity or other meta-information (e.g. sex, age,
ethnicity, medical history, etc). We show an example of the
construction of brain atlases for different ages using a cohort
of 575 subjects between the ages of 18 and 80.

Index Terms— patient-specific atlas, 4D atlas, kernel
smoothing, average space atlas

1. INTRODUCTION

The ability to construct a representative anatomical atlas of a
given population is an important tool in the analysis and inter-
pretation of medical images, enabling spatial characteristics,
such as the size and location of structures, to be determined.
For example, atlases of different populations can be compared
to determine differences, or a subject can be compared to an
atlas of normal anatomy in order to detect abnormalities or
potential disease.
The creation and use of atlases requires bringing subjects

in the population into a common coordinate system in which
the subjects can be compared. How to define such a com-
mon space is a major topic of research, particularly in brain
image analysis. One of the earliest atlases, and one which
is still frequently used, is the Talairach atlas [1], which was
constructed from imaging the post-mortem brain of one 60
year-old female. However, a single subject can never account
for all the variation in a population, and the subject may not be
representative of the group under consideration. This has mo-
tivated the development of population atlases, created from
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several subjects of the same population.
One approach creates probabilistic atlases which include

information about the probability of certain anatomical struc-
tures from a set of subjects making them more representative
of a population. These atlases have been successfully used to
investigate structural and functional differences in the human
brain as part of the International Consortium for Brain Map-
ping (ICBM) [2]. A prominent example of such a probabilis-
tic atlas of the human brain is the atlas developed at the Mon-
treal Neurological Institute (MNI) [3] whereMR images from
305 subjects were mapped into stereotactic space, segmented
and averaged on a voxel-by-voxel basis. Another approach
generates atlases which describe the statistical variability of
anatomical structures [4, 5, 6].
Both types of atlases are typically static in the sense that

they are constructed from a pre-defined population. A notable
exception to this is the dynamic brain atlas proposed by Hill
et al. [7] in which a subject-specific probabilistic atlas is con-
structed by selecting different subgroups of the population.
For their particular application the different subgroups are de-
fined by the ages of the subjects in the population. However,
each subject is given the same weight during the atlas con-
struction. This ignores the fact that some subjects are more
relevant for a particular query subject.
More recently Davis et al. [8] proposed a method for

population-based shape regression. We adopt this idea to
build a 4D atlas of the ageing brain which can be customized
to a particular age of a query subject.

2. GENERATION OF A PATIENT-SPECIFIC ATLAS

In this paper we demonstrate the creation of atlases specific
to a certain measure or feature, for example age, gender or
disease. We present a method for the construction of patient-
specific atlases of the brain. Traditional atlases of the brain
aim to characterize the variability of a population of subjects.
A common approach is to map the anatomies of each subject
of the population into a common coordinate system and then
average these anatomies. During the averaging process each
subject is equally weighted.
The resulting atlases are population-specific rather than

subject specific. In this paper we propose a method for the
construction of patient-specific atlas for a given patient (or

480978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



query subject) from a large population cohort. During the at-
las construction we compute the similarity between the query
subject and each other subject in the population cohort. This
similarity measure can be based on image similarity or other
meta-information (e.g. sex, age, ethnicity, pathology). The
similarity values between the query subject and the subjects
in the population can be used to provide weights that can be
used during atlas creation. We present examples where inter-
subject similarity is based on their ages.

3. KERNEL SMOOTHING

We use kernel smoothing for the construction of the patient-
specific atlases. Kernel smoothing is a standard statistical
tool for filtering out high-frequency noise from signals with a
lower frequency variation [9]. In this work, we use the tech-
nique to obtain time dependent estimates of ventricular and
tissue volume for the population and to generate a 4D time
varying brain atlas. The technique is used across the popula-
tion of the training set to compute the average signal for any
given age, using weighted support from the examples that are
close to the target age. The kernel serves both to interpolate
between the examples and to average out the variation due to
individual subjects, which is treated as noise.
The path of the average trajectory x(t) is parameterised

by the target age, t, and given by

x(t) =

∑N

i=1 w(ti, t)yi∑N

i=1 w(ti, t)
, (1)

where N is the size of the population, ti is the age of subject
i and yi is the signal from the corresponding image.
We use the Gaussian kernel, defined by

w(ti, t) =
1√
2πσ

e
−(ti − t)2

2σ2

The width of the kernel, σ, is a parameter that is deter-
mined by the size of the input dataset and its distribution.
Smaller values tend to to introduce noise into the time-varying
trajectory since it becomes influenced by individual exam-
ples, while values that are too large will tend to smooth out
variation in which we are interested. For our data, we found
that good results are obtained for 3 < σ < 5.

4. AVERAGE SPACE ATLAS CREATION

The method used for the creation of average space atlases is
based on the use of transformation averaging [5, 6, 10]. In
this approach, the images to be averaged are registered to a
chosen reference and the resulting transformations are aver-
aged to create the atlas. This process is illustrated in Figure 1
where images {I1 , . . . , In} are registered to the reference
image Iref . The resulting transformations, {T1, . . . ,Tn} ,
can be averaged to produce T̄, which can generate a set of

Fig. 1. The average space atlas, Ī, is generated using the
inter-subject transformations {T1, . . . ,Tn} and their average
T̄.

transformations {T1T̄
−1, . . . ,TnT̄

−1} that are used to spa-
tially normalise the images {I1 , . . . , In}. These are then av-
eraged to produce the atlas Ī . This method of generating av-
erage space atlases has been shown to be robust to the choice
of reference [6, 10] and representative of the images of the
group [11].
As a pre-processing step, all images were affinely aligned

to the reference so that the remaining differences are rep-
resented by non-rigid (local) displacements. The intensi-
ties of all images were also linearly normalised to have the
same mean and standard deviation. The non-rigid registra-
tions were carried out using free-form deformations (FFDs)
where vectors at a lattice of control points are blended us-
ing B-splines to provide a smoothly varying displacement
field [12]. The inter-subject displacements can be averaged
using the expression

T̄ =
1

N

N∑

i=1

Ti

where the averaging is applied to the control point compo-
nents. This expression can be extended to incorporate the
weights derived from kernel smoothing (Eq. (1))

T̄(x, t) =
1

c

N∑

i=1

w(ti, t)Ti(x) (2)

where c is a normalising constant, c =
∑

N

i=1 w(ti, t). The
average space atlas at time point t can then be given by

Ī(x, t) =
1

c

N∑

i=1

w(ti, t)Ii ◦Ti ◦ T̄
−1(x) (3)

Equations 2 and 3 show that the kernel smoothing weights
are used both during the transformation averaging stage and
during the creation of the average atlas.
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5. RESULTS

5.1. The IXI database
The IXI database is a cross-sectional brain imaging study and
contains MR images from 575 normal subjects between the
age of 20 and 80 years. For each subject a comprehensive
set of MR images are acquired including T1, PD- and T2-
weighted volumes, dense “pseudo-volumes” based on acquir-
ing overlapping slices as well as DTI and MR angiograms.
Imaging was carried out at three sites on three different scan-
ners (Philips 1.5T, Philips 3T and a GE 3T). All images are
anonymised and have been converted to the NIFTI file for-
mat. The image data together with meta data that describes
the image properties and includes basic demographic infor-
mation collected from the subjects (age, gender, handedness,
smoking habits etc) is freely available for download subject
at http://www.ixi.org.uk.
In this paper we have only used the T1-weighted MR im-

ages. These images have a size of 256 x 256 x 150 with
a voxel size of 0.9375mm x 0.9375mm x 1.2mm. All T1-
weighted images were bias corrected and segmented into tis-
sue classes using SPM5. After this the images were registered
to the MNI template using affine registration. After affine
registered the images were registered to non-rigid registra-
tion [12].

5.2. Kernel smoothing of the ventricular size, GM- and
WM- volume
Regions of interest (ROIs) were defined using the available
grey and white matter masks for the Brainweb reference at-
las. An additional manual segmentation was generated for
the ventricles. Given a transformation from the reference to
a subject’s image, it is possible to estimate a volume change
map in the space of the reference using the Jacobian deter-
minants, J(x), where x is a reference location. Let Ω be a
particular ROI and Ti be the transformation between the at-
las and image i. To measure the size of the Ω in image i an
estimate of the volume |Ti(Ω)| is needed. This represents the
volume of Ω after the transformation is applied and is given
by

|Ti(Ω)| =
∑

w∈Ti(Ω)

1 ≈
∑

v∈Ω

J(v)

where v and w represent reference and subject voxel loca-
tions respectively.
In Figure (3) the ventricular volume (normalised by brain

size), grey matter volume and the white matter volume are
plotted for all the images in the training set over time. The re-
gression curves shown were calculated using kernel smooth-
ing (Eq. (1)) with a value of σ = 4. For the ventricles, we can
see that from the age of 50 the volume of the ventricles start
to increase almost linearly with age.
Figure (3) shows a linear decrease in grey matter volume

from the age of 25. This matches earlier findings (see [13]
for example). It can also be seen in the figure that the white

matter starts to decline around the age of 50. From the age
of 20 to 50 there seems to be a very slight increase in white
matter volume.

5.3. The patient-specific 4D atlas of the ageing brain
Using Eq. (3) we can create an average space atlas at any
given time point t. In this way we can create a time-varying
4D brain atlas from the age of 20 to 80. Figure (2) shows im-
ages taken at the age 30, 40, 50, 60, 70, 80 from the resulting
atlas. A movie illustrating this atlas can be downloaded from
http://www.doc.ic.ac.uk/˜anders/movie/. It can be seen
in the images that the anatomy is stable throughout the video,
except that the ventricles increase in size.

6. CONCLUSIONS

In this paper we have derived a method for the construction
of patient-specific atlas for a given patient (or query subject)
from a large population cohort. During the atlas construc-
tion we compute the similarity between the query subject and
each other subject in the population cohort. This similar-
ity measure can be based on image similarity or other meta-
information (e.g. sex, age, ethnicity, medical history, etc). We
have shown an example of the construction of brain atlases for
different ages using a cohort of 575 subjects between the ages
of 18 and 80. This gives us a 4D average space atlas.
Kernel smoothing is used to construct the 4D atlas and to

exemplify this method we have done kernel regression on the
GM-, WM- and ventricular-volume.
Future work will focus on other similarity measures. One

possibility is to calculate the principal components of the free
form deformation-transformationsand use aMahalanobis dis-
tance on the parameter space as a similarity measure.
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Fig. 2. The images (from left to right) at 30, 40, 50, 60, 70, 80 years old taken from the
created movie.
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Fig. 3. The grey matter vol-
ume (top), the white matter vol-
ume (middle) and ventricular
volume (bottom).
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